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TWO-WAY ANALYSIS OF VARIANCE FOR WEIBULL POPULATIONS

1.0 SINGLE CLASSIFICATION EXPERIMENTS

During Fiscal Year 1978 the work begun in 1977 on the analysis
of single classification experiments was brought to full fruition

~with the completion of a comprehensive (50 pages) report con-

taining theory, tables and worked examples of both the analysis

and design of single classification experiments with two-parameter
Weibull variates. The report has now been accepted for publication by
the Journal of Statistical Planning and Inference [1].

Extensive additional tables of the numerical values needed
for analyzing single classification Weibull experiments were
also computed. Approximately 35 hours of CPU time on SKF's

~ IBM 370/158 computer were used in generating these tables.

A small number of sets have been reproduced togéther with the
report discussed above as an SKF publication and will be
available to qualified requestors. Copies have been sent

to the Rome Air Development Center for the use of the reliability
analysts headquartered at that site. Copies have also been dis-
tributed throughout the SKF world-wide organization with a cover
letter citing the potential for savings in bearing testing that
follow from adoption of these methods.

The methods for analyzing single and crossed classification
experiments developed under this contract have been successfully
applied in other DOD sponsored work performed at SKF. For the
Navy, under contract N00019-76-C-0168, we have examined alter-
native plans for endurance testing three varieties of silicon

nitride material in rolling contact.
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For the Army, under Contract DAAK70-77-C-0034 we have compared
the effect of six types of grease on the endurance performance
of tapered roller bearings.

In a.further effort to disseminate our results, a presen-
tation was made to six staff members of the Reliability Branch
of Rome Air Development Center at Rome, N.Y. on March 29, 1978.
As a consequence of that meeting life test data on integrated
circuits were communicated to us by RADC/RBR for analysis.
The data were found to have been collected in grouped form rather
than as individual failure times and were not therefore amenable
to the analysis developed under this contract. A more limited
nonparameter analysis was performed and communicated to RADC in

the form of a short report [2].

We have presented a talk based on the single classificétion
analfsis entitled "The Comparative Power of the Likelihood Ratio
and a Shape Parameter Ratio Test for the Equality of Weibull
Scale Parameters' at the Joint Statistical Meetings in San Diego,
Calif., on August 17, 1978.[:& copy of the documentation dis-
tributed at the meeting is given in Appendix I;]

Two important new areas of investigation have been opened
up during this contract year, namely, 1) Weibull regression and
2) location parameter estimation and inference.

2.0 WEIBULL REGRESSION

: The regression problem is applicable to situations where
4 life tests are conducted at each of several levels of a variable

arbitrarily termed a "stress'". In applications the "stress"

could be a voltage, temperature, load, etc. The Weibull scale
parameter or 'characteristic" life is assumed to vary inversely
with a power of the stress.
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A numerical scheme has been developed for the joint esti-
mation by the method of maximum likelihood of the Weibull shape
parameter and the stress-life exponent.

The method has been implemented in a computer program
"REGSIM". to produce, using Monte Carlo methods, the distribution
of the statistical quantities needed for setting confidence limits
on the Weibull shape parameter, the load-life exponent and a
fixed percentage point of the life distribution at any desired’
stress level. The stress levels at which inferences are to be
made may be outside the range of stresses at which life tests
were conducted. The results are thus applicable to the analysis
of "accelerated'" tests, a common practice in the engineering and
physical sciences.

In addition to REGSIM a program called "REGEST'" has been
developed to perform estimation on sets of data taken at speci-
fied stress levels. A paper has been prepared entitled

“"Inference in Weibull Regression'". It contains theoretical details
and a full numerical illustration of the application of the
techniques. Lﬁ’copy is included as Appendix II;]

3.0 LOCATION PARAMETER ESTIMATION AND INFERENCE

The Weibull location or threshold parameter is, in the life
testing context, the value prior to which failure cannot take
place. In ordnance applications the threshold parameter might
represent the time (after arming) before which a bomb cannot
explode.

It is important to be able to estimate and set a lower
bound for the location parameter based on a set of observations.
We have during the current contract year explored and found
fcasible, a technique for estimating and setting lower bounds on
the Weibull scale parameter. A program called LOCEST was developed
to perform this analysis on a set of data. The program LOCSIM
develops, by Monte Carlo sampling, the tabular data needed for

implementing the estimation procedure and optimally sclecting




Several production runs have been made using LOCSIM to try
to determine a rule for choosing the early order statistic at
which to make an estimate of the Weibull slope for best (most
powerful) detection of a non zero location parameter. The fifth
order statistic works best in all cases examined. '
Below ry=5 overflow problems were encountered in the iterative
estimation routines caused by occasional large values of the
estimated shape parameter. We have incorporated the closed form
expression for the ML shape parameter estimate applicable when
censoring at the second failure. This permits trouble free
solution at xp=2 and confirms that there is an optimum value of
ry> 2. Thus the optimum ry has been demonstrated to satisfy
Z <ry 25 in all cases examined.

Null and non-null runs have now been made in which the
distribution of the test statistic for evaluating the location
parameter was determined with r1=5 for various sample sizes (n)
and censoring amounts (r), specifically: n=10, r=6,7,8,9,10,
n=20, r=5,10,12,15,18,20, n=25, r=10,14,18,20,25, n=30, r=10,15,
20,25, 30.

An additional set of runs was made with r
re8,3,6,7,8,10, n=15, r=5,10,13,32,15,.

1=2 and n=10,

This is sufficient information to warrant the preparation of
of a paper. This will be undertaken early in the next contract
year.

A summary of the software developed to date under this
contract follows.
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PROGRAM
NAME

WEIBEST

WEIBSIM

REGEST

REGSIM

FACSIM

LOCEST

LOCSIM

SOFTWARE SUMMARY

FUNCTION

Analyzes k sets of Weibull data. Computes
individual shape parameters, 3 percentiles
and printer plot. Calculates shape para-
meter ratio test statistic, likelihood ratio
test statistic and ratio of largest to
smallest individual group shape parameter
estimates.

Calculates critical values of SPR and LR
test statistics and distributions for
interval estimation of percentiles and
shape parameter.

Calculates exponent of power function rela-
tion betwecen scale parameter and stress,

3 percentage points at each stress level
and the shape parameter.

Simulates the distribution of 5 pivotal
functions needed for setting single and
joint confidence intervals in Weibull
regression.

Calculates the distribution of functions
required for testing significance of row
and column effects in factorial experiment
with no interaction.

Calculates the test statistic for location
parameter and the median unbiased and lower
95% limit for location parameter.

Computes null distribution of shape para-
meter estimates based on first T, and r
order statistics in samples of size n.
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THE COMPARATIVE POWER OF THE LIKELIHOOD RATIO
AND A SHAPE PARAMETER RATIO TEST FOR THE
EQUALITY OF WEIBULL SCALE PARAMETERS

John I. McCool, SKF Industries, Inc.
King of Prussia, PA 19406

INTRODUCTION

We consider k two-parameter Weibull populations having a common

shape parameter B and possibly different scale parameters UFERE The
CDF of the i-th population is written:
F(x) =1 - exp {- [x/ni]B} (1)

Given samples of size n from each population, each type II censored

at the r-th failure, the maximum likelihood estimate of 8 when the ny

are presumed to differ, is the solution B,; of:

IIA 1 k T 1 k n g, § / n B8, ] 2)
By * z T loge. 0y ol L% s kOgX. . T X, =0 2

. Tk i=1 j=1 i(3) k i=1 j=1 i(3) i(j3) j=1 i(j)

where xi(j) is the j-th order statistic in the sample from the i-th

population.

The ML estimate of ny is

G0N R Y
L S T

(3)

When the populations have a common scale parameter ni=Ng» the ML shape
parameter estimate is the solution 80 of:

k n éo
R e L AN ) D5
+ ng. . e A =
o 7K 4o je1 - 20D kn B
=3 S
The ML estimate of o is
” kK n 8 1/8
o o
n, = b I X:.. /r;} (5)
: {i=1 j=1 10)
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TESTING EQUALITY OF SCALE PARAMETERS

We consider two tests of the hypothesis Ho:ni=n0 a shape para-

meter ratio (SPR) test based on the ratio B:1/Bo, of the two shape parameter

estimates of Eqs. (2) and (4) and a test based on the likelihood ratio
A using as test statistic the monotonically transformed value -2log)
expressible as, ;

b k
-2logXr = 2rklog(B./B¢) *+ 2
i=1 j

T eT T St i

I [log(—l))Br 10g(—ii))Boy (6)
=1 nji No

The distributions of both test statistics depend only upon n, r and k
under the null hypothesis.

Table 1 gives 90 and 95% points of Bi1/Bo and -2logA determined by
Monte Carlo sampling for various n, r and k with n ranging from 5 to 30
and k, from 2 to 10.

The degree to which -2log) approaches the asymptotic Xx* distribution
based on k-1 degrees of freedom may be judged by their respective 95-th
percentiles, listed in. columns 7 and 8 of Table 1.

POWER OF HYPOTHESIS TESTS

The power of the SPR test against various alternatives has been
found to depend only upon the value of the symmetric function of the n,:
S k
¢1 = I logn® B/ znf - 1/K A

i=1 i=1t

¢, is scale invariant. When the n;'s are equal, ¢, = 0, and when the
n; are not all equal, ¢,>0.

The power of the LR test depends on ¢, ancd another symmetric,
scale invariant, postive function of the ni's given by

k k 8 8 .
¢ = I 1log IZ?i/kni] : (8)
i=1 i=1

For equal ¢, the.power of the LR test may be slightly inferior or
slightly superior to the SPR test, depending upon the value of ¢2. In
general, SPR is best against a single aberrant i.e., when all ni's are
equal but one,and k>2; the LR test is superior against more "diffuse"
alternatives in which several ni's differ.
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For fixed r the power of both tests, against the single aberrant
alternative, decreases with n and increases with k.

Figure 1 shows, for k=2 and n=30 the value of the acceptance pro-
bability plotted for various r against n® (nf=1.0). The SPR and LR
tests are indistinguishable to graphical accuracy. These values may
be used, for each r as a conservative approximation for the acceptance
probabiiities against the single aberrant alternative, when k>2 and
n<30.

. INTERVAL ESTIMATION OF THE SHAPE PARAMETER

The simulations that were used to find the critical values of the
SPR and LR tests also yielded the distributions of the function

v = 8./8 (9)

This distribution depends only on n, r and k. A 100(1-a)% interval
estimate of B is obtained by inverting the inequalities in the proba-
bility statement

Pr [VO./Z < 81/3 < vl_u/z] i (10)

For 90% confidence the interval is

Bi1/Vy g5 < B < B1/Vy g (11)

The ratio R of the upper to lower end of this interval is given by
Ri= Voies’ Mo ids L)

The quantity R may be used to characterize the precision within
which B8 has been determined by the k censored samples of size n.
Figure 1 shows some plots of R against censoring number for n=5, 15
and 30 and with k=1 and k=5. For a given value of r the precision
worsens with n. For fixed n precision improves with r. Considerable
precision is gained, particularly at low censoring numbers, if samples

can be pooled for estimating B, i.e., if k>1.

—




AL78P025

INTERVAL ESTIMATION OF A PERCENTILE OF THE i-th POPULATION

The 100 p-th percentile of the i-th population is expressible in
terms of ny and B as

x, = [-1og(1-p 1'% n, (5
i v
Its ML estimate is correspondingly

x, = [-log(1-p]/8: . q, (14)

: §
The function 2
~ X
u = B;log( pi/xp.) (15)

1

follows a distribution that depends on n, r and k only. 1In terms of
the 5-th and 95-th percentiles of u, a 90% confidence interval for xp

is calculable as ~

~ ~

L] - L) < - . o ~
xpi exp | u0.95/B] < xpi xpi exp [ u0.0S/B] (16)
The ratio of the upper to lower ends of this confidence interval
is a random variable through its dependence on B. The B-th power of
the median value of this random variable denoted may be expressed as

R3.50 = exp[(-uy g5 * vy g5)/ Vg 50l (17

and may be used as a measure of the precision with which xp. has been

determined. Wi
Figure 2 shows RS.SO for estimating the tenth percentile X0.10

of any population, as a function of censoring number for some n and k

values. Again, pooling of samples believed to have a common shape

parameter greatly increases the precision in the determination of Xp.10°
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81/8q
k 0.90 0.95
2 1.799 2.144
3 1.788 2.078
4 1.769 2.009
5 1.744 1.925
10 1.644 1.747 -
2 1.259 1.366
3 1.273 1.361
4 1.275 1.353
5 1.267 1.339
10 1.246 1.284
2 1.363 1.508
3 1,372 1.491
4 1.367 1.463
5 1. 365 1.438
10 1.328 1.378
2 1.105 1.150
3 1.116 1.149
4 1.118 1.142
5 1.114 1.139
10 1.105 1.121
2 1.374 1.535
3 1.392 1.522
4 1.392 1.491
5 1.377 1.462
2 1,151 1.190
3 1.144 1.185
4 1.145 1.181
5 1.143 1.176
2 1.066 1.096
3 1.072 1.095
4 1.074 1.091
5 1.074 1.090
2 1.382 1.546
3 1.408 1.542
4 1.398 1.495
5 1.389 1.478
2 1.139 1.197
3 1.155 1.202
4 1.158 1.195
5 1.155 1.190
2 1.079 1.112
3 1.087 1.115
4 1.088 1.111
5 1.089 1.108
Table 1.
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.071
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.110
. 455
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.34

.220
.453
.233
.068
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.102
. 862
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7.235
10.24
12. 80
15.07
24.88

5.290

7.804
10.08
12.10
20.72

5.782

8.372
10.51
12.45
21.58

4.472

6.834

8.706
10.55
18.61

5.770

8.428
10.63
12.44

4.653

6.846

8.962
10.87

4.436
6.562
8.497
10. 38

5.749

8.469
10.51
12.41

4.587

7.004

9.120
11.01

4.297

6.583

8.591
10.56

90-th § 95-th Percentiles of
SPR

and LR Test

Statistics

S

9.49
16.9

3.84
5.99
7.81
9.49
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7.81
9.49

3.84
5.99
7.81
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30
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8y/84 -21og) 2 (k-1)
T X 0.90 0.95 0.90 0.95 . 0.95
30 2 1.031 1.044 2.890 4.025 3.84
30 3 1.035 1.044 4.765  6.192 5.99
30 4 1.035 1.044 6.511 8.123 7.81
30 5 1.035 1.042 8.121 9.938 9.49

Table 1 (Continued)

REFERENCES

McCool, J. I., "Analysis of Variance for Weibull Populations',
in the Theory and Applications of Reliability, edited by C. Tsokos
and I. Shimi, Academic Press, (1977).

McCool, J. I., "Analysis of Single Classification Experiments Based
on Censored Samples from the Two-Parameter Weibull Distribution",
submitted for publication.

ACKNOWLEDGMENT

This research was sponsored by the Air Force Office of Scientific
Research (AFSC), United States Air Force, under Contract No.
F49620-77-C-0007.

[N .




APPENDIX II

* INFERENCE IN WEIBULL REGRESSION

J. I. McCOOL

SKF REPORT NO. AL78P045

NOVEMBER 1978

SKF INDUSTRIES, INC.

TECHNOLOGY SERVICES DIVISION
1100 FIRST AVENUE

KING OF PRUSSIA, PA 19406




INFERENCE IN WEIBULL REGRESSION

ABSTRACT

We consider an experimental situation in which a response
variable follows a two-parameter Weibull distribution having a
scale parameter that varies inversely with a power of a deter-
ministic, externally controlled, variable generically termed a
"stress'. The shape parameter is presumed to be invariant with
stress. Equations are formed, from the results of type II cen-
sored life tests conducted at each of several stresses, whose
solution yield the maximum likelihood estimates of the common
shape parameter, the stress-life exponent, and a general percen-
tile of the life distribution applicable at an arbitrary stress
level. A numerical scheme for solving the equations is given.

Pivotal functions of the ML estimates are found whereby
interval and median unbiased point estimates may be calculated
once the distribution of the pivotal functions is found by
Monte Carlo sampling. A numerical example of the calculation of
point and interval estimates is given. The precision with which
the shape parameter is estimated by testing at several stresses
is comparable to the precision applicable to a single test of
the same total sample size. The precision in estimating percen-
tiles is a maximum ncar the middle of the stress range at which
testing was performed and is, at that point, comparable to the
precision obtained in a single stress test of the same total

sample size.
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INFERENCE IN WEIBULL REGRESSION

1. INTRODUCTION AND SUMMARY

The conduct of 1ife tests at more than one level of an environ-
mental factor known to affect the parameters of the life distri-
bution is a common practice. Ordinarily, the environmental fac-
tor is set at higher levels of intensity than the test item will
meet in service, in order to shorten the expected time to failure.
The life test results obtained at these levels are then extra-
polated to more usual levels of the environmental factor hy
fitting constants to a theoretical or empirical relation between
the factor levels and one or more parameters of the life distri-
bution. (It is usual to assume the form of the life distribu-
tion is not altered by the level of the environmental factor.)

Life testing having these aims, has come to be called accelerated
life testing and an extensive literature on the subject has
developed, primarily in connection with the testing of eclectronic
components. The environmental or accelerating factor is
customarily called stress, but may actually be voltage, load,
temperature, etc.

The work described in this paper is applicable to the analysis

of censored accelerated life tests in which i) a two parameter
Weibull distribution governs at each stress and ii) the Weibull
scale parameter varies inversecly with a power of the stress while
iii) the shape parameter is invariant with stress.

The primary aims of the present work are to find point and
interval estimators of i) a quantile of the life distribution
at a specified stress, ii) the Weibull shape parameter and
iii) the exponent of the stress-life model based upon the
method of maximum likelihood. These aims are analogous to the
traditional aims of regression analysis.




Singpurwalla [1] has considered the case where the lives follow
the single parameter exponential distribution with the scale
parameter varying inversely with a power of the stress and
where the data at each stress level is censored. He derives
the maximum likelihood (ML) estimates of the stress-1life
exponent and the constant of proportionality of the stress-
life law. He uses asymptotic theory for setting confidence
limits on these parameters.

Nelson [2] treats the two parameter Weibull case but estimates
the parameters separately at each stress. He then estimates
the common shape parameter as a weighted combination of the
individual shape parameter estimates and the stress-life
exponent and proportionality constant by weighted least squares
using the logarithmically transformed stress values as the
independent variable.

In [3] Singpurwalla and Al-Khayyal under the same assumptions as [2]
consider the direct use of the method of maximum likelihood

to estimate the common shape parameter and the stress-life

exponent and constant and find the asymptotic covariance

matrix of the estimators for the uncensored case.

In a numerical example they calculate these estimates by direct
maximization of the likelihood function using SUMT.

In Section 2 of the present paper, the ML estimation equations
are derived for the joint estimation of the two parameters of

the stress-life law and a general quantile of the life distri-
bution at arbitrary stress S for the case where n,; items arec
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tested at each of k stress levels Sl"'sk and testing continues
to the occurrence of the r;-th failure at each stress.

In Section 3, the ML equations derived in Section 2 are tested
to determine whether they reduce to the ordinary equations when
a single stress level is employed and whether the estimates are
properly invariant when the units of the stress scale are
changed.

Section 4 contains the derivation of pivotal functions which,
given their distributions for specific sample sizes,will permit
bias correction of, and the setting of confidence limits on,

1) a general quantile of the life distribution at stress S,

2) the Weibull shape parameter and 3) the stress-life exponent.

Section 5 contains the description of a scheme found to be
effective for the numerical solution of the likelihood equations
and briefly describes a computer program for the Monte Carlo
calculation of the distribution of the pivotal functions

derived in Section 4.

Section 6 is a numerical example of the analysis of a set of
rolling contact_fatigue data obtained at four levels of the
contact stress.

2. PROBLEM FORMULATION AND DERIVATION OF ESTIMATORS

We consider .a series of life tests in which a sample is tested
at each of k stress levels. We suppose that for i = 1...k,

n; specimens are subjected to stress S and run until the
occurrence of the first T, failures.

N




It is assumed that under stress S; the time-to-failure of the
test item is a two-parameter Weibull random variable having a

scale parameter p. and a stress-independent shape parameter Bg.
i p

That is, the cumulative distribution function of the life at
stress S, is expressible as

Prob[life <x| S=Si] =1 - exp[-(x/ni)B] (1)

The scale parameter n; is assumed to vary inversely with the
Y-th power of the stress S;» i.e. as:

i o i 2)

where N, is a constant representing the scale parameter at unity

stress.

We denote by Xi(3) the j-th ordered 1life achieved at stress S

with xi(ri) = xi(ni)'

*i(ris1) -
Given the results of such a life test, we wish to form the

maximum likelihood (ML) estimates of the parameters B B8 and
¥ :

The logarithm of the likelihood function written for all k
samples is found to have the form ‘

k k. "3
logl = logc + log B & og ¥ (B-1) = r log X5 5) (3)
i=1 i=1 j=1 10
K i | 8
25 ifl g i 38 ifl jfl [xi(j)/ni]
4
preneRpTp—————




Equating to zero the derivative of logL with respect to n,
gives the following equation which must be satisfied by the ML
estimates Ng» B and .

A AN

d9logl _
o e a0

(4} i

"ne~ >
-
+
™
=

0 (—ii%roe— 0 (4)

i=1 j=1

~ ~ ~

The solution for n, in terms of y and B is:

2 _ ) 1/8
sigd g (—ii%l)s} - (5)
o j=1 s, g
When By * N and - PREEE for all i this equation specializes to:
N ) SRR . p 1/%
= Gp =1 (2 HH (6)
i=1 j=1 s,

Differentiating Eq. (3) with respect to Yy and substituting
from Eq. (5) gives:

T 0 T G
X z T, z Si logSi Z [xi(.)]
dlogh . r 1.10g8, - i i=) >k W =0 (7)
Y o R b B p
= UL R 1 TR
gwyp ° i(3)
For Fg " T, By * By Eq. (7) reduces to:
k ~ n
X | TR SlYg logS z [11(3)]B
dlogh ., logS. - =l 1=1 - (8)
Y i=1 Ry
; % Si b xi(.)
i=1 j=1 J




Finally,'differentiating Eq. (3) with respect to B and using
Eqs. (S5) and (7) leads, after considerable simplification, to
the expression:

k. S By 5
T I logr..: I 8. Eooxo oy Toge oo
1 % i=1 )_:_.1 1(]) % i=l 1 j=1 l(J) 1()) v 9
= o P (9
B8 YR8 B )
z 'I‘i 2 Si xl()
i=1 e R
For ) and By = 3, Eq. (9) specializes to:
k AN n ~
5 YB 5 B
1 1 g S i=1 i j=1 X805y 1% 5 i
~ + % ROENS 5 K S =
g Tk i=1 j=1 g g By 8

Following the simultaneousAsolution of Eqs. (7) and (9) for

8 and Y one may evaluate W from Eq. (5). The ML estimate of
ni is obtained using Eq. (2) and the fact that ML estimates of
functions of parameters are just those functions of the ML
estimates, i.e.

g = w80 (11)

The p-th quantile of the life distribution under stress Si may

be estimated as:

i T
Xpi = [log(ﬁ)] b ni (12)

3. CHECKING THE VALIDITY OF THE EQUATIONS

As a check on the reasonableness of the likelihood equations
given above we consider the special case in which all testing
is at a single stress, i.e. Si = S (all i). In this case

S T Ry e L R e ————




the stress-life exponent y should be unestimable and the equa-
tions for estimating B and ny should reduce to the expression
known to apply when a single sample is considered..

" From Eq. (8) with Si = S one has:

o | =
K8 Yegs T @ -xg(j)
klogS - o 177 =0 (13)
SYB z I xB .
1=1 j:l I(J)
which reduces to:
k log S - k log S =0
i.e., the equation is satisfied for any value of Y.
Eq. (10) with Si = S becomes:
ot B
S z I X
= + ?R' .E ‘-z-: 1ngi(j) e Eaway k Fol x =3 0 (14)
B i=1 j=1 YB B
S z % x.( )
i=1 j=1 'Y
The estimate of T, becomes, from Eq. (6):
1 8 1/8
= 87 { RN AT (15)
(0} Tk i=1 J=1 l(J)

The estimate of n, the Weibull scale parameter at stress S using
Eq. (11) then becomes:

>

3

K B e a |
S 8 ,1/8 (16)
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Eqs. (14) and (16) are seen to be equivalent to the ML equations
for estimating n and B from a single sample of size kn having
! rk failures (cf. Cohen [4]).

Another check for reasonableness of the equations can be made
by virtue of the fact that the estimates of B, Y and n, should
be invariant with respect to a change in scale of the stress
e.g. the estimates should not be affected if the units in

which stress is measured are changed from English to metric.

To test whether this is true, introduce a scale change
g. = cS, (17)

where ¢ is a constant and Ui is a multiplicatively transformed
value of Si'

~

Substituting 8, = Gi/c into Eq. (8) gives:

AN

k o, YB n g
i kifl(g—) [logci - logc] -=1xi(j)
Z logo., - klogc - —¢ e < 'ia =0 (18)
s i a. n
i=1 1,YB B

L T

i=1 j=1

which becomes:
k “a

X kE o." 10gc.

guy & i .
Z logo. - k logc - e ~ + k logc = 0 (19)
i i k n
i=1 YB g

i=1 j=1 J

Substituting S.1 = Oi/c into Eq. (10) gives:




An k n A
YB YB
1 z L
o e g Ll 1ok i X5 (5)108%; 5
) X n _ =0 (20)
8 A=laj=l i (l/cYB) Lot YB Z xB
j=1 * =1 10

Eqs. (19) and (20) are identical to Eqs. (8) and (10) respectively
except that Gi replaces Si' AThus the simultaneous solution of
Eqs. (8) and (10) for ¥ and B is invariant with respect to a

scale change in the stresses.

~

The solution for N, using 8y = Oi/c becomes from Eq. (6):

~ £ ) R WL SRSTREE g ey
==Yl ; () By1/8
ng=c 'z T I (LHT) (21)
o rk i=1 j=1 oi-? :

Eq. (11) then becomes:

~

.'Y A k X A A

# o 3 n i

ne® —a, e WL 5 2018148 (22)

1 - rk g P
cY i=1 j=1 ci Y

Again, Eq. (22) is identical to Eq. (11) with oy replacing Si’
so that the ML estimate of s is unaltered by a scale change
in stress.

4. PIVOTAL FUNCTIONS

It is possible to draw inferences, i.e. set confidence inter-
vals and make hypothesis tests for a parameter if one can
determine a function of the parameter and its estimate that
L follows a Jdistribution that depends on sample size but not




upon that parameter or any other parameters of the distribution.
Such functions are designated pivotal functions and have been

} found for the shape parameter and a general quantile in the

; single sample case of the two parameter Weibull distribution
[cf. McCool (5)].

In searching for pivotal functions for the present problem we
use the strategy employed in [5] of expressing a Weibull random
variable in terms of its population parameters and a rectangular
variable. When this is done the order statistic xi(j) transforms
to

e 13 ) Ml {-1logu }l/B

ij (23)

where the variables uij follow beta distributions with parameters

that depend on sample size but not upon n; or B .

For simplicity we hereafter restrict attention to the special
case of constant sample size in which Ry =0 and Eg - The
results apply to the unequal sample size case as well.

Substituting Eq. (23) into Eq. (8) and using (2) results, after
some simplification, in the equation:

A A A

k n .
ks 580" Viogs, & (-1ogu, ;)?/P
Bogs, - R o . =0 (24)
SR R 8/8
N ¥ {-logu,.}
i-1 j=1 1)

k
z
i=1

10




Substituting Eq. (23) into Eq. (10) and using Eq. (24) leads to:

k n AN ~
g . Sg(y-Y){-loguij}Blsloglog(lluij)
Bele I T loglogifu, MRzl 4 =0 (25)
B " Ti=1j=1 1 B(y-v) g/e
T [ -1logu..]
i=1j=1 1 o

If one now writes E(;-Y) as (E/B)(;-Y)B it is seen that for a
given set of Uij Eqs. (24) and (252 can be solved simultaneously
for the quantities q= B/8 and s=(y-y)B . In repeated sampling
i.e. different sets of uij’ these quantities will vary in a

manner that depends only on k, r and n.

If for specified values of k, r and n repeated Monte Carlo
samples were drawn from a two parameter Weibull population
having say B = 1.0 and y = 0, one could empirically determine
as closely as desireg the distribution of a and hence of q and
the distribution of y and hence of s.

Denoting'the 100 a-th percentage point of the distribution of q
by qa(r,n,k), one may invert the probability inequality:

P [ag_ g5 (rsn,k) < B/B < qy g¢ (Tyn.K)] = 0.90 (26) |
to obtain a 90% confidence interval for B as:

B/qO.gs (r,n,k) < B < B/qo.os (r’n,k) (27)

A median unbiased estimate of B would be:

~

k4 B” = B/QO.SO (r,n,k) (28)
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As proposed in [6] the ratio R of the upper to lower ends of a
confidence interval on the shape parameter is a useful measure
of the precision with which the shape parameter is determined
in a sample of given size.

Arbitrarily using a 90% interval it follows from Eq. (27) that
“Ri= a6 95740 95 (29)
For setting confidence intervals on Y it is noted that since
the random variables s and q are distributed independently of
the Weibull parameters, so is their product w* = s * q, i.e.:

wh = (Y-Y)B <B/B = (Y-7)8 (30)

Thus from the distribution of w*(r,n,k) one may set a 90%
confidence interval for y as:

5 wh (r,n,k) ~ w* (r,n, k)
e 88 & ey it S , (31)
B B
A median unbiased estimate of Y is calculable as:
A A w¥ Er,n, k)
A L (32)
B

A convenient measure of the precision of determination for

Y is the median length L0 50 of a (say) 90% confidence interval.

From Eq. (35) and the definition of q, LO 5o Mmay be calculated
as:

% o
Ye.95 © Yo 05

L =
895, 59

0.50

(33)

12
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L0 50 depends on the sample size parameters, i.e. k, n and r
and also on the true but unknown value of the shape parameter
B.

The ratio of L0 50 values for various sample size choices is
however independent of B.

Substituting Eq. (23) into Eq. (6) and u§ing Eqs. (11) and

(12) gives the following expression for x in terms of the uy

pi
~ % k k n - ° 2 =
S e r p R Lo YWEATE (34)
pi i o° rk .2, gag & ij
where k, = log(ris) (35)
The population value of xpi is:
e 1t WB oY
51 = K, s n, (36)

Dividing Eq. (34) by Eq. (36) and raising both sides to the
B -th power gives: ‘

~ I-B/B AA A A
X k k n =
[-P1] 8- gtBlysig oty Byl _ 1B/8 37
X3 ;E i gui gog 1 { logulJ} (37)

The right hand side of Eq. (37) involves only the uij and the

pivotal functions q and w* and thus the function on the left
side of Eq. (37) or its logarithm is a pivotal function.

13
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Defining

- X s
u* (r,n,k,p) = 8 log [f] (38)
pi ’
one can, given the percentage points of u*, set confidence

limits on x Two sided 90% confidence limits would have the

pi’
form:
~ p . - X A.. g 2
xpi exp | uO.QS/B < xpi < xp1 exp [ u0.0S/B] (39)
A median vunbiased estimate of xpi may be calculated as:
'=Ao -u® 5
xpi xp exp [ uO.SO/B] (40)

It should be noted that all of the foregoing applies even when
the stress at which it is desired to estimate Xx_ is not one

of the stresses at which 1life tests are run. Confidence limits
and median unbiased point estimates can be calculated for any
stress within or without the range of stresses encompassed by
life tests.

A measure proposed in [6] of the precision with which X5i is
determined is the median ratio RO.SO of the upper to lower
ends of its confidence interval. Choosing a 90% interval this

ratio becomes, from (39)

"My 05 " “0.95]

(41)
849,50

R = exp [

wherein the median value of g is expressed as the product Bdg . 50°

14
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5. NUMERICAL SOLUTION OF THE ML EQUATIONS

The solution of Eqs. (9) and (7) by means of a general nonlinecar
equation solver routine that computes derivatives using finite
differences, was found to be slow and unreliably convergent.

The ad hoc solution scheme described below was found to be
quite fast and dependable.

Using the transformation

A

= Y L -
Y15 = 9% Xi () : (42)

Eq. (9) reduces to

A et k k% p ko 5
1/8 + I Eoodogy.L F Ty v % L Y, Yogy..fE T
i=1 j=1 Wit ged gag o A=l ey Y
(43)
o TR T AR
LA ) y?. logSi/ I z y?. =y X rilogSi/}Er = 0
j=1 j=1 ji=1 j=1 ) Rt |
i=1
while Eq. (7) becomes
X i
k St et eg T3 Moyl
I r1,lo0gS, - = J =0 (44)
je1 * k i 2 .
X )2 Yii
i=l . je1

When Eq. (44) is satisfied the last two terms of Eq. (43) are
also satisfied. The remaining terms of Eq. (42) are recognized
as the terms that must sum to zero when estimating the Weibull

shape parameter from k type II censored data groups with yij

15




representing the j-th ordered observation in the i-th group
(ef.. 17)) For a given set of yij the solution of these
equations for B is readily accomplished by the Newton-Raphson
method.

From this observation the following approach to the simultaneous
solution of Eqs. (48) and (49) suggests itself:

~

1) Guess a value of Y = ;M’ ’

2) Transform the data to y;? using Y = ¥ in Eq. (47)

3) Solve for B =B(”_from the first three terms of Eq. (48)
using y,. = y{?

4) Use Band v (%in"Eq. (49) and solve for an improved
Y =y Y using the Newton-Raphson method. .

5) Repeat steps (1)-(4), iteratively replacing Y by the
latest value emerging from step (4), until successive
Y and B estimates do not differ by more than a

prescribed amount.

This procedure was incorporated into a simulation program
written in Fortran IV, that generates 10 000 realizations of

a random experiment in which k samples of size n are tested at
each of k stresses Sl’ SZ"' Sk until the first r failures
occur.

The failure lives follow a two parameter Weibull distribution
with shape parameter B = 1.0 and with a p-th percentile value
xpi at stress Si(151...k).

The input data consists of the values n, r, k,Si (i=1,k), p
and x_. (i=1,k) and the values of three additional stresses

1

Sk+1’ Sk+2"' Sm at which it is of interest to calculate xpi'

16




By setting x i constant for all i one simulates the case where
the stress-life exponent has the value y = 0.

The program calculates ;, g and ; i (i1,...k+m) for each
realization and compiles, for specified functions of these
observations, their empirical distribution over 10 000 simulated
realizations of the experiment. :

6. NUMERICAL EXAMPLE

The following data are the ordered times to failure in rolling
contact fatigue of ten hardened steel specimens tested at
each of four values of the contact stress.

Stress
106-psi Ordered Lives

0.87 1.67, 2.20, 2.51, 3.00, 3.90, 4.70, 7.53, 14.70,
27.76, 37.4

0.99 0.80, 1.00, 1.37, 2.25, 2.95, 3.70, 6.07, 6.65,
7.05, 7.57 |

1.09 0.012, 0.18, 0.20, 0.24, 8.26, 0.32, 0.32, 0.42,
0.44, 0.88

1.18 0.073, 0.098, 0.117, 0.135, 0.175, 0.262, 0.270,

0.350, 0.386, 0.456

Rolling contact fatigué data of this type are customarily treated
as samples from two-parameter Weibull populations having a

scale parameter that varies inversely with a power of the

contact stress and a shape parameter that is invariant with
stress [cf. Lieblein and Zelen (8)].
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For the most part these assumptions appear to be satisfied by
the present data. Probability plots suggest however that the
first failure at the stress S = 1.09 is an outlier and that
at S = 0.87 a three parameter Weibull model with a location
parameter of about 1.50 is indicated.

For expository purposes we nonetheless accept the two-parameter
Weibull model as adequately representing the data.

To test the constant shape parameter assumption we calculate
the raw ML shape parameter estimates for each sample, obtaining
the values listed below:

Stress (10° psi) 0.87 0.99 1.09 1.18
ML Shape Parameter Est. 0.953 1.57 1.43 1.96

Following [9] we employ as test statistic the ratio 1.96/0.953 =
2.06 of the extremal shape parameter estimates.

From values tabled in [9] we find that for k = 4, n = r = 10,

the 90-th percentile of the null distribution of the extremal
shape parameter ratio is (Bmax/smln)o 90 " 2.47. Since 2.06<2.47
there is no reason to reject the hypothesis of a common shape
parameter.

Proceeding then, we calculate the joint ML estimates of the
stress-1life exponent y and the common shape paramecter B from
Eqs. (8) and (10) to be:




|

Additionally we calculate the ML estimate B (1) of the common
shape parameter B that applies when the n; are not constrained
in any way (cf. [7]) with the result B () = 1.343.

The estimate B ;) is closer to the average of the four individual

ML estimates tabled above than is the estimate B = 1.166 that
results when the scale parameters are constrained to vary with
an inverse power of stress. This suggests some lack-of-fit to
the inverse power law.

The ML tenth percentile estimates at the four stresses are
as follows:

Stress (10°% psi) 0.87 0.99 1.09 1.18
% power law 2.209 0.3672 0.0965 0.0321
0.10  ynconstrained 2.328 0.7862 0.0656  0.0457

The simulation program was run with n = r = 10, k = 4 and S1 =
0.87, S2 = 0.99, S3 =.1.09, §; = 1.18 and the additional value
S5 = 0.75. The distributions were calculated for q, w*, and
the u* applicable at each S; - The 5-th, 50-th and

95-th percentiles of these random variables are listed in

Table 1.

Using these tabled values one calculates from Eq. (27) the 90%

confidence interval
0.913 = 1.166/1.277 < B <1.166/0.8459 = 1.378

From Eq. (28) a median unbiased estimate of the shape parameter
is

A~

B' = 1.166/1.024 = 1.139
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From Eq. (29) the precision measure R is calculated as

This value is in good agreement with the value calculated for a
single uncensored sample of size n = 40, indicating that there
is a negligible loss in precision for estimating B by conducting
tests at four stresses rather than at only one.

From Eq. (31) a 90% confidence interval for the stress-life
parameter is calculated to be

11.92 = 13.889 - 2.293/1.166 <Y< 13,889 +
2.433/1.166 = 15.98

A median unbiased estimate of y is from Eq. (32)

~

Y' = 13.889 + .3783/1.166 = 14.21

From Eq. (33) the product of B and the precision measure L0 50
is

£.895 » £.8433

BLy.s0 = B ]

Using Eqs. (39), (40) and (41) yields the following values of
the median unbiased estimates and 90% confidence limits for
X0.10i° 1 =056 ALSO éistcd for each stress are the values
of the precision measure RO.SO'
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90% Confidence Interval

Median Unbiased

Stress X Estimate Lower *0.10 U B
Stvess £p. 10 Ritinate AT sRRer R .50—
0.75 iR BS 1022 38.4 6.70
8T ;. 2.13 1.09 3.86 4.21
0.99 0.358 0.193 0.572 3.42
1.09 0.094 0.050 0.152 3.55
1.18 0.031 0.016 0.054 4,03

Figure 1 shows on logarithmic scales the straight line that joins

the raw estimates of X0.10 plotted against stress along with
the bands formed by the upper and lower confidence limits cal-
culated at each stress.

Also shown are the ..l estimates of Xy 10 at the four stresses
at which data were taken computed under the assumption of a
common shape parameter but with no constraint on the variation

of X510 with stress and their associated 90% confidence inter-
vals.

The lower confidence 1limit for the uncontrained estimate at S2 =

0.99 just touches the line fitted under the power law constraint.

This confirms the indication of lack of fit to the power law
model suggested by the comparison of the constrained and un-
constrained shape parameter estimates discussed earlier.

Fig. (2) is a plot of R% 50 against stress level. Fig. (2)
illustrates how RO 50 is a minimum near the midpoint of the
stress range, increasing substantially when extrapolating to

stresses outside the range of the tests.




The value of R%.SO for a single test of size n =r = 40 was

found by simulation to be Rg.so = 3.41. This compares favorably
with the minimum value shown on Fig. 2. This indicates that if
high precision is required at some specific stress level a
negligible loss in piecision is suffered if, rather than con-
ducting all tests at this stress level, some specimens are tested
at surrounding stress levels. Plots like Fig. (2) can be
constructed in advance of any actual testing to determine the
choice of stress levels, the number of levels and the sample
sizes that yield a precision "profile'" that the experimenter finds
suitable. In addition as noted previously the sample size and
censoring number can differ at each stress level.
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TABLE 1

Percentiles of Pivotal Functions
k=4, n=1r=10

$,=0.87, $,=0.99, S;=1.09, S,=1.18
0.05 0.50 0.95
g/8 0.8459 1.024 1.271
(Y-v)8 -2.433 -0.3783 2.293
Blog [xg 10/%g.10)5
= 0.75 -0.9238 0.0555 1028
=5, = -0.6495 0.0441 0.8209
=S, = -0.5170 0.0305 0.7520
=5, = -0.5309 0.0318 0.7671
=5, = -0.6079 0.0396 0.8193
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